Alkynes

Alkynes are highly reactive and the triple bond can exert remarkable effects on the rest of the molecule through a combination of characteristic properties. A number of new alkynes derivatives are now available through Alfa Aesar. Many have already been extensively cited in the scientific literature; here are just a few examples of their use.

6-Heptynoic acid (H53519) has been used in many studies including in fatty acid amide hydrolase inhibitors ${ }^{1}$, alkynyl-substituted spirocyclic sulfamides for the treatment of alzheimer's disease ${ }^{2}$, catalytic cyclizations to form ε-lactones ${ }^{3}$, and the selective fluorescence labelling of lipids in living cells. ${ }^{4}$ Hua and coworkers have optimised palladium-catalyzed transfer semihydrogenation of internal alkynes (H30395) affording cis-alkenes in good to high yields with excellent chemo- and stereoselectivity. ${ }^{5}$ Yusubov et al. were able to selectively oxidize one triple bonds in the same compound to afford a 1,2-diketones. ${ }^{6}$

The alkyene (H51897) was employed in a multi-step supramolecular chemistry reaction, which terminated with cobalt-catalyzed cyclotrimerization reaction, to yield an extended hexagonal molecule, as a highly symmetrical ligand. ${ }^{7}$ The group led by Bureš has studied H 51914 and other similar moieties as push-pull molecules with a systematically extended π-conjugated system featuring 4,5-dicyanoimidazole. ${ }^{8}$ Alfa Aesar has extended its comprehensive range of heterocyclic compounds with the following alkynes.

H30395
1,4-Bis(phenylethynyl) benzene, 97% [1849-27-0]

H51058
4-Chlorophenylacetylene, 98%
[873-73-4]

H53440
Cyclopropylacetylene, 97\%
[6746-94-7]

H53470
9,10-Bis(phenylethynyl)-2ethylanthracene, 98% [53158-83-1]

H53418
Cyclohexylacetylene, 98\% [931-48-6]
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$

H53467
4,6-Decadiyne, 97\%
[16387-71-6]

H53452
1-Chloro-2-octyne, 98\%
[51575-83-8]

H53483
Cyclopentylacetylene, 97\%
[930-51-8]
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$

H53400
5-Decyn-1-ol, 97\%
[68274-97-5]

H53441
2-Chlorophenylacetylene, 98\%
[873-31-4]

H53463
2-(Cyclopentylethynyl)pyridine, 95\%
[865173-44-0]
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

H53414
2,9-Dimethyl-5-decyne, 96\% [19550-56-2]

H51897
Diphenylacetylene-4,4'diboronic acid bis(pinacol)
ester, 95\%
[849681-64-7]

H53372
4-Methyl-1-heptyn-3-ol, 97\%
[87777-46-6]

H30058
1-(2-Phenylethyl)-4(phenylethynyl)benzene, 97\% [906650-60-0]

$$
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}
$$

H53504
3-Heptyne, 97\% [2586-89-2]

$\mathrm{HC} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CO}_{2} \mathrm{CH}_{3}$

H53453
Methyl 10-undecynoate, 96\%
[2777-66-4]
$\mathrm{HC} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{H}$

H53519
6-Heptynoic acid, 95\% [30964-00-2]

H51914
4-(4-Methoxyphenylethynyl) benzeneboronic acid pinacol ester, 95\%

H53419
Methyl 4-ethynylbenzoate, 97\% [3034-86-4]

H51699
4-(Phenylethynyl)benzeneboronic acid pinacol ester, 97%
${ }^{1}$ D. L. Boger, et al., J. Med. Chem., 2005, 48, 1849.
${ }^{2}$ Merck Sharp \& Dohme Ltd, Patent: WO2003/93253 A1, 2003.
${ }^{3}$ H. Imagawa, et al., Synlett, 2006, 639.
${ }^{4}$ A. B. Neef, \& C. Schultz, Angewandte Chemie, Int. Ed., 2009, 48, 1498.
${ }^{5}$ J. Li, R. Hua \& T. Liu, J. Org. Chem., 2010, 75, 2966.
${ }^{6}$ S. Y. Mehman, V. D. Filimonov, V. P. Vasilyeva, K.-W. Chi, Synthesis, 1995, 10, 1234.
${ }^{7}$ M. Takase, A. Nakajima, T. Takeuchi, Tetrahedron Letters, 2005, 46, 1739.
${ }^{8}$ J. Kulhanek, F. Bureš, O. Pytela, T. Mikysek, J. Ludvik, A. Ruzicka, Dyes \& Pigments, 2010, 85, 57.

